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Election results are determined by numerous social factors that affect the formation of opinion of the voters,
including the network of interactions between them and the dynamics of opinion influence. In this work we
study the result of proportional elections using an opinion dynamics model similar to simple opinion spreading
over a complex network. Erdös-Rényi, Barabási-Albert, regular lattices, and randomly augmented lattices are
considered as models of the underlying social networks. The model reproduces the power law behavior of a
number of candidates with a given number of votes found in real elections with the correct slope, a cutoff for
a larger number of votes, and a plateau for a small number of votes. It is found that the small world property
of the underlying network is fundamental for the emergence of the power law regime.
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I. INTRODUCTION

There has been a growing interest in the study of social
phenomena through the use of tools from statistical physics
�1–4�. This trend has been in part stimulated by develop-
ments in complex networks �5–8�, which have uncovered
properties of the structures underlying the interactions be-
tween agents in many natural, technological, and social sys-
tems. Social processes can be simulated through the use of
complex network models over which a dynamical interaction
between the agents represented by the nodes is defined,
yielding results that can be compared with the macroscopic
results found in real social networks.

Election of representatives are important social processes
in democracies, where a large number of people take part
and that represent the result of many social factors. It was
found �9� that the number of candidates with a given number
of votes in the 1998 Brazilian elections follows a power law
with slope −1 for some orders of magnitude, or a generalized
Zipf’s law �10�.

Elections depend on the process of opinion formation by
the voters. Each voter chooses one candidate based on its
beliefs and through interaction with other voters. Many
works have been carried out on opinion formation while con-
sidering several types of dynamics and underlying network
topologies. Bernades et al. �11� and González et al. �12�
succeeded in reproducing the general −1 slope of candidates
with a given number of votes in Brazilian election results by
using the Sznajd �13� opinion formation model adapted to
complex networks.

In the Sznajd model, two neighbors that happen to have
the same opinion may convince their other neighbors. In this
paper, we adopt a simpler model, where each single voter
tries to convince its neighbors, regardless of their previous
opinion. The obtained results exhibited a substantial agree-
ment with real election results for some network models.

The paper is organized as follows. Firts we describe the
network �Sec. II A� and opinion �Sec. II B� models used in

the simulations. Then, in Sec. III we present and discuss the
simulation results and study the effect of the model param-
eters. Finally, the conclusions are summarized in Sec. IV.

II. OPINION AND NETWORK MODELS USED

As done in other related works, we assume that the opin-
ion formation for the voting process occurs as interactions
between agents connected through a complex network. The
result is thus determined by two factors: �i� the structure of
the network that specifies the possible interactions between
agents, and �ii� the dynamics of opinion formation between
interacting agents. The following subsections describe the
models used in this work.

A. Network models

The voters and their social interactions are represented as
a network, so that the individuals are represented by nodes in
the network and every social interaction between pairs of
voters is represented by a link between the two correspond-
ing nodes. The number of links attached to a node is called
the degree of the node; the social distance between voters is
given by the geodesic distance in the network, defined as the
minimum number of links that must be traversed in order to
reach one of the nodes starting from the other. Two important
network properties �7� are the degree distribution and the
average distance between pairs of nodes.

For the simulation of the opinion formation model we
adopted the Erdös-Rényi and the Barabási-Albert �5,14�
models of complex networks. For comparison, simulations
were also performed in two-dimensional lattices, two-
dimensional lattices with random connections added between
its nodes, and a generalized model of Barabási and Albert
�15�. The Erdös-Rényi networks are characterized by a Pois-
son degree distribution and the presence of the “small world”
property: the average distance between nodes grows slowly
with the number of nodes in the network. The Barabási-
Albert model also has the small world property, but its de-
gree distribution follows a power law, resembling in that
sense many social networks. The regular lattice was chosen
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as an example of a network without the small world property,
while the addition of random connections enables a con-
trolled introduction of this property �see Ref. �16��. The gen-
eralized Barabási-Albert model is characterized by an adjust-
able slope of the power law degree distribution and is used to
assess possible influences of this slope on the results.

In the Barabási-Albert model, the network starts with m
+1 completely connected nodes and grows by the successive
addition of single nodes with m connections established with
the older nodes, chosen according to the preferential attach-
ment rule �14�. The growth stops when the desired number of
nodes N is reached. The generalized Barabási-Albert model
is parametrized by two probabilities: the rewiring probability
� and the linking probability �, such that �+��1. At each
step, one of the following actions is taken: With probability
1−�−�, a new node is inserted �as for the basic Barabási-
Albert model�; with probability �, m links are rewired by
chosing a node at random, disconnecting it from one of its
neighbors, and reconnecting to another node with preferen-
tial attachment; with probability �, m links are added chosing
a node at random and a new neighbor for it with preferential
attachment �see Ref. �15��. The tail of the resulting degree
distribution follows a power law as k−�, with

� = 1 +
2m�1 − �� + 1 − � − �

m
. �1�

To generate the Erdös-Rényi network, we start with N iso-
lated nodes and insert L links connecting pairs of nodes cho-
sen with uniform probability, avoiding self- and duplicate
connections; for comparison with the Barabási-Albert model,
we choose L so that m=L /N is the same as the m values used
for the Barabási-Albert model.

For the two-dimensional lattices, the N nodes are distrib-
uted in a square and the connections are established between
neighboring nodes in the lattice. Afterwards, additional con-
nections can be incorporated between uniformly random
chosen pairs of nodes until a desired number of average ad-
ditional links per node is included. This kind of randomly
augmented regular network is similar to that used in the
Newman and Watts small-world model �17�.

B. Opinion model

For a given network with N voters �nodes�, we start by
distributing the C candidates among randomly chosen nodes
�with uniform probability�, that is, each candidate is assigned
to just one node in the network �this reflects the fact that the
candidates are also voters�. The remaining voters start as
“undecided,” meaning that they have no favorite candidate
yet. The following process is subsequently repeated a total of
SN times: choose at random a voter i that already has an
associated candidate ci; for all neighbors of voter i, if they
have no associated candidate �i.e., are as yet undecided�, they
are associated with candidate ci, otherwise they change to
candidate ci with a given switching probability p. The con-
stant S introduced above is henceforth called the number of
steps of the algorithm �average number of interactions of
each node�. This opinion model is motivated by the follow-
ing assumptions: �i� undecided voters are passive, in the

sense that they do not spread their lack of opinion to other
voters; �ii� undecided voters are easily convinced by interac-
tion with someone that already has a formed opinion; �iii� the
flexibility to change opinions due to an interaction, quanti-
fied by the parameter p, is the same for all voters. Despite the
many limitations which can be identified in these hypotheses,
they seem to constitute a good first approximation and can be
easily generalized in future works.

This model is similar to a simple spreading to unoccupied
sites, and can be reduced to an asynchronous spreading if the
switching probability is zero. In spite of its simplicity, the
model yields interesting results, as discussed below.

III. RESULTS

In the following, we present and discuss the histograms
expressing the number of candidates with a given number of

FIG. 1. Distribution of candidates with a given number of votes
after 30 steps for networks with 2 000 000 voters, 1000 candidates,
5 links per node, and a switching probability of 0.1, on the left-hand
side for Erdös-Rényi and on the right-hand side for Barabási-Albert
networks. Error bars show one standard deviation; the lines show
power laws of slope −1 �in the ER plot� and −1.45 �in the BA plot�.
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nodes. The plots are in logarithmic scale, and the bin size
doubles from one point to the next in order to provide uni-
formity. The number of candidates in a bin are normalized by
the bin size. All results correspond to mean values obtained
after 30 different realizations of the model with the given
parameters.

As becomes clear from an analysis of the following fig-
ures, larger values of N /C tend to lead to more interesting
results, motivating the adoption of large N and small C. The
use of too large values of N implies a high computational and
memory cost; the use of too small values of C leads to poor
statistics implied by the large variations in the number of
candidates inside the bins. The standard values of N
=2000 000 and C=1000 adopted in the following represent a
good compromise considering our computational resources.

Figure 1 shows the results of the simulation for Erdös-
Rényi and Barabási-Albert networks after 30 steps and with
a switching probability of 0.1. The result for the Erdös-Rényi
network is similar to results of real elections �9�. There is a
power law regime for an intermediate number of votes, a
plateau for a small number of votes, and a cutoff for a large
number of votes; the power law regime has an exponent of
−1, which is almost the same as that obtained for real elec-
tions �9�. The large variability on the plateau region is also
consistent with the differences found at this part of the
curves when considering different election outcomes �see,
for example, the data in Ref. �10��. A direct comparison of
the model with experimental election results is shown in Fig.
2, which presents the distribution of the number of votes for
the 1998 Brazilian elections for state deputies in the São
Paulo state �18�. Model parameters are the same as for Fig. 1.
Other election results display a similar behavior �see, e.g.,
figures in Ref. �10��.

For the Barabási-Albert model, although two power law
regimes with different exponents can be identified, neither
corresponds to the experimental value of −1; the tail of the
curve follows a power law with slope �−1.45.

The left-hand side of Fig. 3 shows the result for the simu-
lation on a two-dimensional lattice. There is no sign of a
power law regime and a clear peak around 1000 votes can be
noted, in disagreement with the scale-free nature of the ex-
perimental results. On the right-hand side of the same figure,
the effect of adding random connections to the lattice can be
easily visualized. It is remarkable that the addition of just a
small number of new links �about half the number of nodes�
is enough to get a result similar to the one of the Erdös-
Rényi model. It is a known fact �16� that a small number of
random links in a regular network are enough for the emer-
gence of the “small world” phenomenon. By enabling a can-
didate to reach the whole network of voters in a small num-
ber of steps, this phenomenon increases the chance of a
candidate getting a very large number of votes, therefore
broadening the distribution.

FIG. 2. Comparison of model �using ER networks� and real
election results. Experimental data refer to state deputy elections in
the São Paulo state, Brazil, in 1998, with 23 321 034 voters. Model
results are for the same parameters as in Fig. 1.

FIG. 3. Distribution of candidates with a given number of votes
after 30 steps for two-dimensional lattices with 2 000 000 voters,
1000 candidates, 5 links per node, and a switching probability of
0.1, on the left-hand side for a pure lattice �error bars show one
standard deviation� and on the right-hand side for lattices with the
addition of the given average number of shortcut links per node
between randomly selected nodes. The result for the Erdös-Rényi
network is also shown for comparison.
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To verify if the slope of the distribution of candidates with
a given number of votes is influenced by the slope of the
degree distribution for power law networks, we used the gen-
eralized Barabási-Albert model. The original Barabási-Albert
model has a slope of −3. We choose therefore two sets of
parameters that give slopes of −2 and −2.5, respectively, and
at the same time have identical average degrees. The values
of the parameters are m=1, �=6/11, �=4/11 giving �=2
and m=4, �=7/22, �=3/22 giving �=2.5. As can be seen
from Fig. 4, the slope of the power law of the distribution of
votes is almost unaffected by the slope of the degree distri-
bution. In fact, fitting for a power law in the region of the
number of votes between 100 and 200 000, we get for the
original Barabási-Albert model ��=3� a slope of −1.45, for
the generalized model with �=2.5 a slope of −1.44, and for
�=2 a slope of −1.40.

Now we turn our attention to the influence of the param-
eters of the model. In Fig. 5 the effect of changing the num-
ber of candidates while keeping the other parameters fixed is
shown. For the Erdös-Rényi model, the effect of increasing
the number of candidates translates itself as an upward shift
of the curve while, at the same time, the cutoff is shifted to
the left. This is an expected result: as the number of candi-
dates grows with a fixed number of voters, the candidates are
initially distributed closer to one another in the network, and
have therefore fewer opportunities to spread influence before
hitting a voter already with an opinion; this leads to a cutoff
in a smaller number of votes and in an increase in the num-
ber of candidates with fewer votes than the cutoff. In the
Barabási-Albert model, the behavior for a small number of
votes is similar: the curve is shifted up; but for the power law
regime of a large number of votes, the curve decays more
steeply as more candidates are added.

Changing the number of voters has an impact limited al-
most exclusively to the tail of the curves, as seen in Fig. 6.

When the number of voters is increased, in the Erdös-Rényi
model, the cutoff is shifted to the left and the power law
regime is correspondingly increased. In the Barabási-Albert
model, the maximum number of votes is shifted and the in-
clination of the second power law regime is changed to ac-
commodate this displacement. Comparing with Fig. 5, we
see that the tail of the curve for the Barabási-Albert model
adapts its inclination according to the relation between the
number of voters and candidates, i.e., a larger value of N /C
implies a flatter tail.

From Fig. 7 we can see that the behavior that is being
discussed appears only if the network is sufficiently con-
nected: for m=1 there is no power law regime for the Erdös-
Rényi model and the behavior for the Barabási-Albert model
is complex, with three different regions and a peak for a
small number of votes. Also for this latter model, the incli-
nation of the tail of the curve appears to be slightly influ-

FIG. 4. Distribution of candidates with a given number of votes
after 30 steps for the generalized Barabási-Albert model with slopes
of the degree distribution of −2 and −2.5, with 2 000 000 voters,
1000 candidates, an average of 5 links per node, and a switching
probability of 0.1. The straight line shows a power law with slope
−1.4.

FIG. 5. Effect of the number of candidates. Distributions after
30 steps for networks with 2 000 000 voters, 5 links per node, a
switching probability of 0.1, and different numbers of candidates,
on the left-hand side for Erdös-Rényi and on the right-hand side for
Barabási-Albert networks.
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enced by the average connectivity, with steeper tails for
smaller connectivities.

The switching probability has an effect only on the first
part of the curve, as can be seen from Fig. 8. In both models,
this part of the curve is shifted down as the probability in-
creases and its range is extended until it touches the original
�for zero probability� curve. Note that the inclination of the
Barabási-Albert curve corresponding to a small number of
votes is maintained for the different values of switching
probability �but is different for zero probability�.

A similar effect has been obtained while changing the
number of steps �Fig. 9�. As the number of steps is increased,
the curve remains unchanged for a large number of votes, but
is downshifted for a small number of votes. The similarity
between an increase in the number of steps and an increase
in switching probability is easily explained: after all voters
have a candidate, changes occur only by switching candi-
dates. In other words, increasing the number of steps in-
creases the number of times a switching is tried, resulting in
a similar effect as increasing the switching probability.

IV. CONCLUSIONS

We suggested and studied a simple voting model based on
the spreading of opinions through the links of a network. The
results of the simulation of the model show a remarkable
qualitative agreement with experimental results for propor-
tional voting in Brazilian elections �9� when the network
model used is of Erdös-Rényi type or a lattice with sufficient
random shortcuts added. In these networks, the model results
in a power law distribution with an exponent of −1, but with
a shortcut for a large number of votes and a plateau for a
small number of votes, as observed in real elections. The
“small world” effect appears to be of central importance in
this result, as the result for a lattice without shortcuts is very
different, without any power law regime.

Interestingly, the Barabási-Albert network model gives re-
sults that are not consistent with the considered real elec-
tions. For the BA model, two power law regimes have been
identified, while the overall curve presents no clear cutoff.
The second �and dominant� power law regime is not univer-
sal, depending on the number of links per node in the net-

FIG. 6. Effect of the number of voters. Distributions after 30
steps for networks with 1000 candidates, 5 links per node, a switch-
ing probability of 0.1, and different numbers of voters, on the left-
hand side for Erdös-Rényi and on the right-hand side for Barabási-
Albert networks.

FIG. 7. Effect of the number of links. Distributions after 30
steps for networks with 2 000 000 voters, 1000 candidates, a
switching probability of 0.1, and different numbers of links per
node, on the left-hand side for Erdös-Rényi and on the right-hand
side for Barabási-Albert networks.
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work and the relation between the number of voters and the
number of candidates. Changes on the slope of the power
law of the degree distribution of the network �in the interest-
ing region between −2 and −3� have no influence in the slope
of the second power law regime. Also the first power law
regime cannot be characterized by the experimental value of
−1. This is somewhat puzzling, as many social networks
have power law degree distributions �7� and are in this re-
spect more closely related to the Barabási-Albert model than
to the other two investigated models. Nevertheless, there is
no reason to suppose that the contact networks underlying
the dynamics of opinion formation should be characterized

as a power law. Instead, the results presented suggest that
these networks are characterized by a homogeneous distribu-
tion of connectivity among the nodes. Clustering and com-
munities are frequent properties of social networks, but are
not present in the studied network models. The influence of
these factors in the election results deserves further investi-
gation.
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